

Investigation of Target Detection in Hyperspectral Images for Aided Target Recognition

> Mazharul Hossain Advisor: Dr. Lan Wang Co-Advisor: Dr. Aaron L Robinson Dept. of Computer Science, University of Memphis

Aided Target Recognition (AiTR)

- Aided Target Recognition (AiTR) enhances the human functions of target detection
 - **Preprocess sensor data:** improve machine detection accuracy
 - Differentiate targets from background
 - Visualize sensor data: human understandability
- Potential Applications:
 - Agriculture: pest detection
 - Environment: land cover changes
 - Military: camouflaged target detection

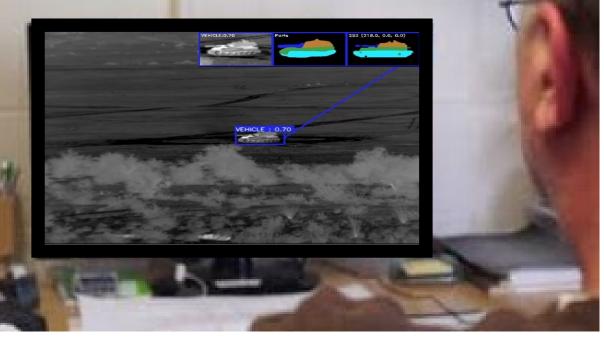
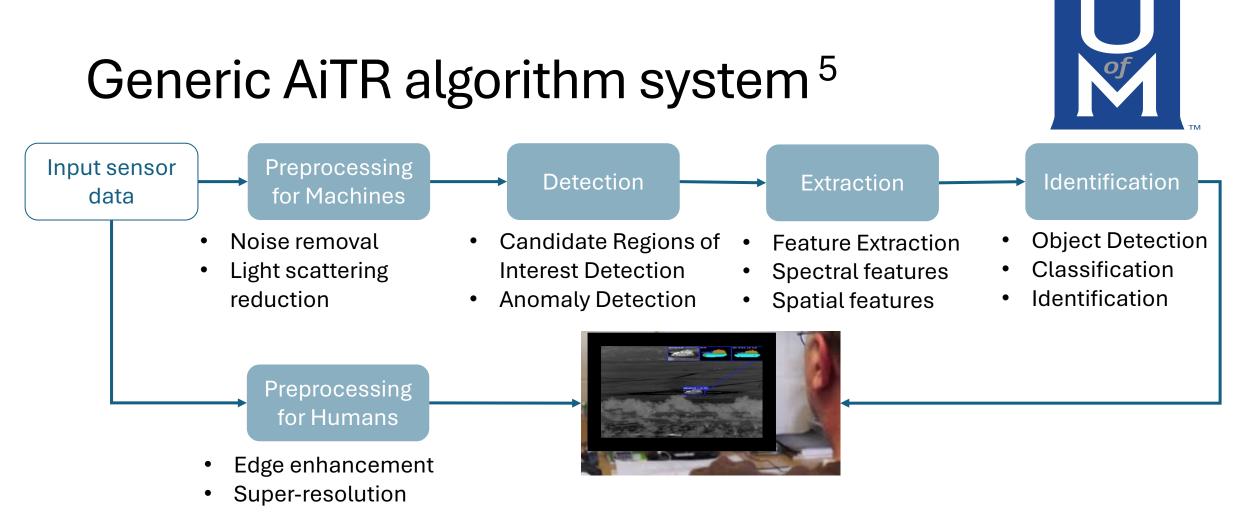


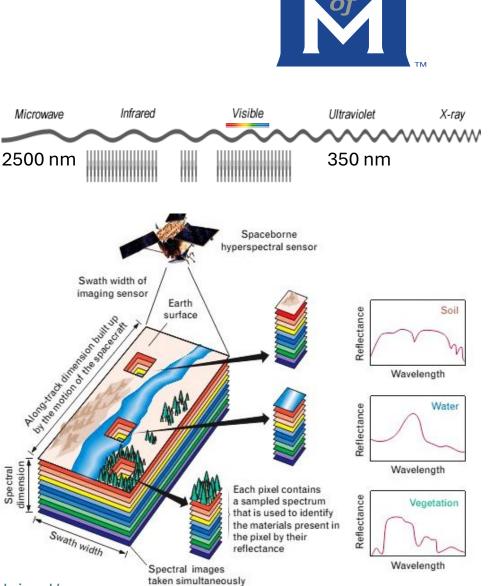
Figure source: Advanced Targeting & Lethality Aided System (ATLAS), https://covar.com/case-study/atlas/



- Low False Alarm Rate (FAR)^{2,3} vs High Detection Rate (i.e., recall)⁴
- Aided target detection can prioritize a high detection rate, which may lead to a higher false alarm rate

Hyperspectral (HS) Imaging

- Hyperspectral imagers capture **contiguous** electromagnetic bands
 - Hundreds of channels
 - Additional reflectance information per pixel¹.
- Different materials reflect light differently
 - A unique reflectance signature
 - Helps classify materials
- Recognize and pinpoint any objects that are out of place in the captured scene
 - Anomaly targets deviate spectrally from their surroundings
 - Figure 1 source: https://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/
 - Figure 2 source: 6



Challenges of AiTR with HS Images

- A hyperspectral imager is **susceptible to environmental** variables
- A hyperspectral imager has low spatial resolution at a high altitude
- Limited public hyperspectral data and annotated data are even scarcer
- Hundreds of correlated channels put memory constraints on fitting deeper networks

Research Goals

- Preprocess hyperspectral images to improve machine detection accuracy
- > Preprocess digital images to enhance human visibility
- Detection: Detect anomalies in diverse scenarios with higher accuracy to aid humans
- Identification: Semantic Segmentation scenes

References

- Harbaugh, M. (2018). Unmanned Aerial Systems (UAS) for Intelligence, Surveillance, and Reconnaissance (ISR). State-of-the-Art-Report (SOAR). Defense Systems Information Analysis Center (DSIAC)
- 2. Teh et al. (2016) "A survey on touch dynamics authentication in mobile devices." Computers & Security 59, 210-235.
- 3. Lasisi et al. (2016). Application of real-valued negative selection algorithm to improve medical diagnosis. In Applied Computing in Medicine and Health (pp. 231-243). Morgan Kaufmann.
- 4. Nayak et al. (2021). A comprehensive review on deep learning-based methods for video anomaly detection. Image and Vision Computing, 106, 104078.
- 5. Ratches, J. A. (2011). Review of current aided/automatic target acquisition technology for military target acquisition tasks. Optical Engineering, 50(7), 072001-072001.
- 6. Khan et al. (2018). Modern trends in hyperspectral image analysis: A review. *leee Access*, 6, 14118-14129.

1: **Preprocess hyperspectral images** to improve machine detection accuracy

2: Preprocess digital images to enhance human visibility

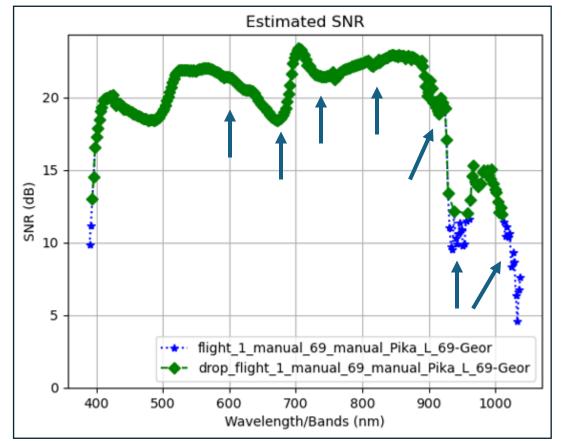
3 Detection: **Detect anomalies** in diverse scenarios with higher accuracy to aid humans

4 Identification: Semantic Segmentation scenes

Of

Noisy Band Removal

- Preprocessing: Remove noisy bands below a fixed threshold (5 SNR) or below a certain percentage
- Sensor noise: before 0.40 and after $1.00 \mu m$
- Atmospheric water absorptions:
 - Weak: 0.60 and 0.66µm
 - Slightly stronger: 0.73, 0.82, and 0.91µm
 - Strong: 0.94 and 1.14µm
- I will investigate the impact of dropping and recovering some of these bands



• Visual comparison showing quantitative improvement of removing noisy bands from Florida Image 1. The green line shows SNR in [dB] after deleting noisy bands, whereas the blue line shows the dropped channels.

Weaknesses of Existing Preprocessing

- Problems:
 - Data collection and stitching may introduce artifacts and noise
 - Dropping noisy channels may cause loss of data
 - Low performance due to the manual section
- Objectives: improve the performance of machine detection methods by preprocessing
 - Find a systematic way to select preprocessing to get the best results in each scenario

Proposed Research Plan I

- Investigate the use of noise reduction and channel dropping (partially complete¹)
- Investigate edge enhancement (partially complete¹)
- Investigate a systematic way to select preprocessing methods to get the best detection results in each scenario (pending)

1: **Preprocess hyperspectral images** to improve machine detection accuracy

2: Preprocess digital images to enhance human visibility

3 Detection: **Detect anomalies** in diverse scenarios with higher accuracy to aid humans

4 Identification: Semantic Segmentation scenes

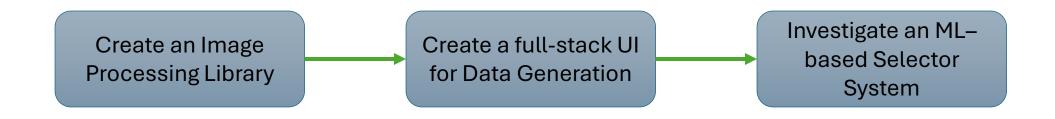
Brightness and contrast in visualization

(a) Original (b) Auto brightness adjust (c) HSV CLAHE

- Brightness weights image pixels toward white
- Contrast adjustment remaps image intensity values to the full display range
- Challenge: automatically select any preprocessing method or combination of methods to create task-dependent enhanced digital images

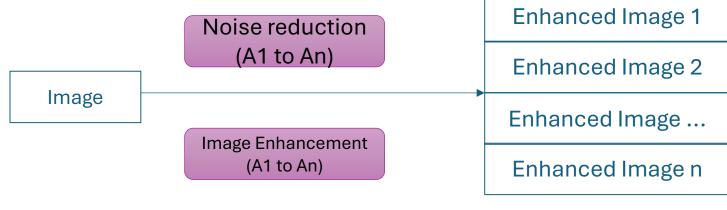
Image Enhancement Methods for Human Understandability

- Preprocess digital images to improve human visibility
 - Single channel: greyscale, NIR
 - Three channel: NIR-RG, RGB
- Collect various image processing algorithms
- Create a new dataset
- Propose a new Algorithm Selector System



Dataset Generation

- A new application will randomly use any preprocessing method or combination of methods to create enhanced digital images
- Humans will select between the **original** and **enhanced** images
- Based on the highest vote, we can create a data tuple (original image, algorithm combination)



Human Input (Y/N)

Image Enhancement Methods Selection

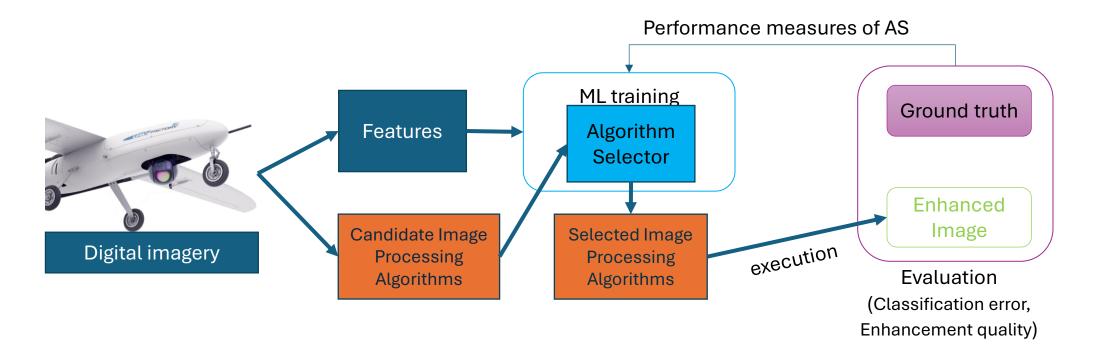


Fig: ML System Training Architecture

Proposed Research Plan II

- (Optional) Preprocess digital images to improve human visibility
 - Propose a new Algorithm Selector System on the new Dataset
 - Investigate it as a Classification problem
 - Find zero or more mutually non-exclusive image processing methods and apply as applicable
- Optional: Depends on the collection of user responses for image processing evaluation, which is pending
- If we fail to collect the necessary data, I will be unable to deliver this part.

1: **Preprocess hyperspectral images** to improve machine detection accuracy

2: Preprocess digital images to enhance human visibility

3 Detection: **Detect anomalies** in diverse scenarios with higher accuracy to aid humans

4 Identification: Semantic Segmentation scenes

Background Hyperspectral Anomaly Detection (HS-AD)

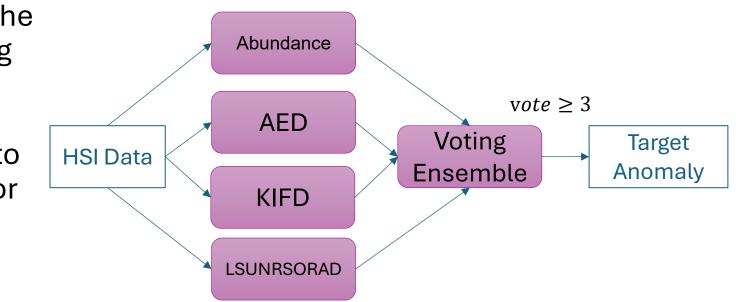
- HS-AD: Procedure to find anomalies in hyperspectral images
- Binary classification: anomaly or background class
- Unsupervised AD methods do not need any annotated data
 - They work differently in different scenarios due to their design assumptions.

ML-based	 SVM, iForest
Statistics based	 RX¹, MD-RX, WIN-RX
Kernel-based	 KRX, GM-RX, KIFD²
Subspace based	 LSUNRSORAD³, CSD, SSRX
Spatial–spectral based	■ AED ⁴
Cluster-based	 CBAD, FCBAD
Ensemble based	 ERRX-MF⁵, ERCRD⁶, SED⁷, HUE-AD⁸

Previous Work

Hyperspectral Unmixing-based Voting Ensemble Anomaly Detector (HUE-AD)

- We tackled the shortcomings of the statistical AD methods by utilizing them in an ensemble.
- We used our domain knowledge to manually select input methods for HUE-AD⁸.
- Abundance using Unmixing method: N-FINDR
- HUE-AD only takes in the binary vote (a vote for a pixel means the pixel is a detected anomaly)
- Equal weight voting for all methods



Weaknesses of HUE-AD

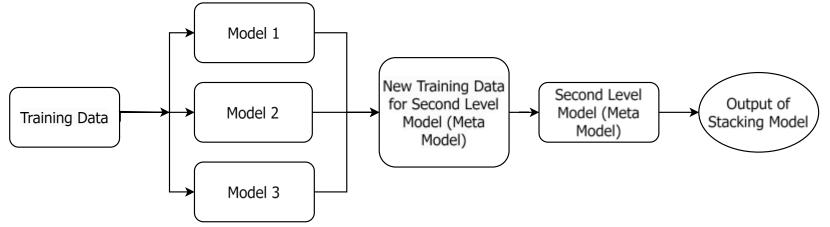
- Problems:
 - Manual selection of AD methods needs in-depth knowledge (different AD methods have different assumptions and perform well in different scenarios)
 - Equal weight assigned to every method
 - Low performance due to the manual section and equal weight
- Objectives: improve performance through automating the process
 - find a systemic way to select the best AD methods in each scenario
 - assign weights to the anomaly score from each method automatically

Proposed Research Plan III

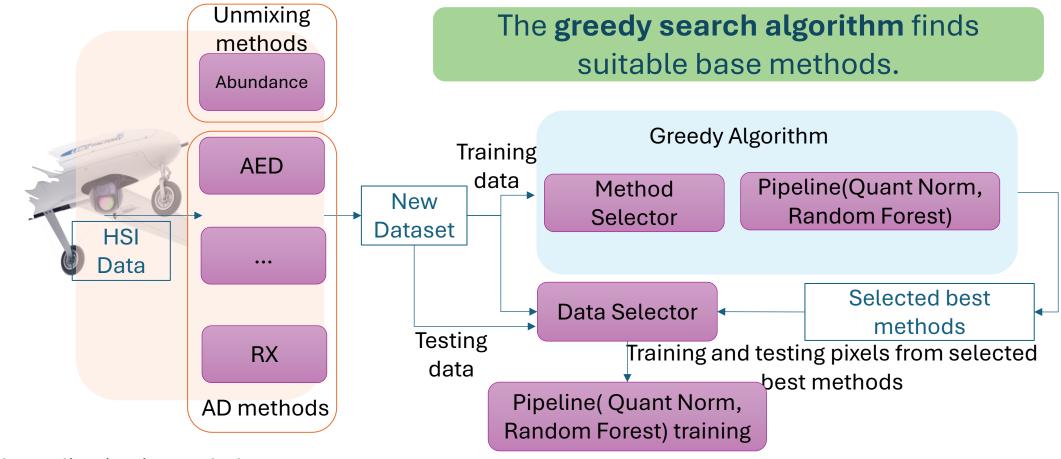
- Detect anomalies in diverse scenarios with higher accuracy to aid humans
 - Investigate an equal vote ensemble (complete¹)
 - Propose a weighted vote ensemble (complete²)
 - Investigate the use of normalization on the results of AD methods (complete²)
 - Propose a search algorithm for the ensemble method (complete²)
 - Generalize the ensemble method for various datasets (pending)

Proposed Method: Greedy Ensemble Anomaly Detection (GE-AD)

- We use the greedy search algorithm to find the best AD methods
 - Greedy search is a **problem-solving heuristic** of making locally optimal choices at each step to find a globally optimal solution.
- We use the **stacking ensemble** where the **meta-model** assigns weights to the anomaly score from each method automatically



Proposed Method: Greedy Ensemble Anomaly Detection (GE-AD)



Normalization is needed as the anomaly score range varies between methods

Random Forest Pipeline learns the weights using the training data.

Evaluation Methodology

Datasets

- ABU- Airport Dataset
- Arizona Dataset
- San Diego Airport Dataset
- Hydice Urban
- Salinas

Metrics

F1-macro

ROC-AUC (Area under the ROC Curve)

Development

- MATLAB
- Python
- Area Under the ROC curve (ROC-AUC) that plots the true-positive rate against the false-positive rate at each threshold setting
- The F1 score is a harmonic mean of the precision and recall

 $F1 = 2 * \frac{Precision * Recall}{Precision + Recall}$

Compared to Other Ensemble Methods

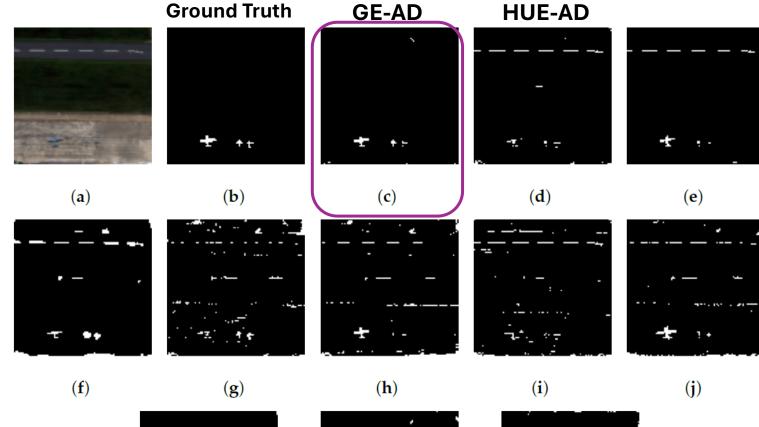
F1-macro	GE-AD	ERRX-MF	ERCRD	SED
ABU-Airport-IV	0.856	0.666	0.545	0.592

 F1-macro values (as we computed) comparison between our proposed ensemble method (GE-AD) and other ensemble methods

ROC-AUC	GE-AD	ERRX-MF	ERCRD	SED
ABU-Airport-IV	0.963	0.997	0.953	0.998

- ROC-AUC scores (as reported) comparison between our proposed ensemble method (GE-AD) and other ensemble methods
- Compared to other methods, the ROC-AUC score differs at the 2nd decimal place

Visual Comparison using the Abu-Airport Dataset



(1)

 (\mathbf{m})

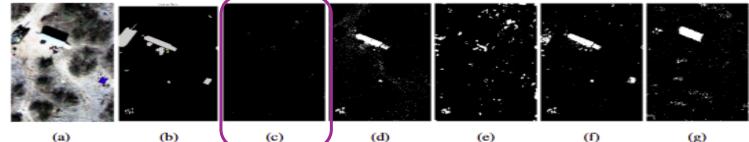
 (\mathbf{l})

- GE-AD on ABU-Airport-IV data.
 (a) RGB, (b) Ground Truth, (c)
 GE-AD (F1 = 0.856), (d) HUE-AD
 (F1 = 0.649), (e) Abundance (F1 =
 0.735), (f) AED (F1 = 0.610), (g) KIFD
 (F1 = 0.587), (h) KRX (F1 = 0.604), (i)
 LSUNRSORAD (F1 = 0.569), (j)
 FCBAD (F1 = 0.631), (k) ERRX MF
 (F1 = 0.666), (I) ERCRD (F1 = 0.545),
 and (m) SED (F1 = 0.592)
- Other methods have more false positives.

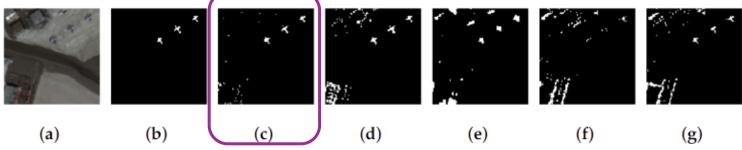
Generalization of Hyperspectral Anomaly Detection

- Universality / Generalization¹: Achieving good results for all datasets
 - Indicates suitability for unknown scenes
- Challenges:
 - Correctly characterize algorithms on benchmark domains
 - Quantify algorithm performance for unknown datasets
- Approach: evaluate the generalizability of GE-AD²

Visual Comparison using the San Diego and Arizona dataset



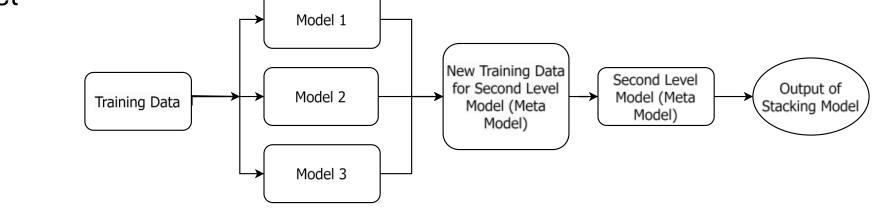
GE-AD trained on the ABU-Airport Dataset, tested on <u>Arizona-V</u>. (a) RGB, (b) Ground Truth, (c) GE-AD (F1 = 0.490), (d) Abundance (F1 = 0.701), (e) AED (F1 = 0.584), (f) FCBAD (F1 = 0.810), (g) KRX (F1 = 0.503).



- GE-AD trained on the ABU-Airport Dataset, tested on <u>San Diego-02</u>. (a) RGB, (b) Ground Truth, (c) GE-AD (F1 = 0.826), (d) Abundance (F1 = 0.655), (e) AED (F1 = 0.636), (f) FCBAD (F1 = 0.536), and (g) KRX (F1 = 0.627).
- GE-AD generalizes for some similar unseen data (both are airports).

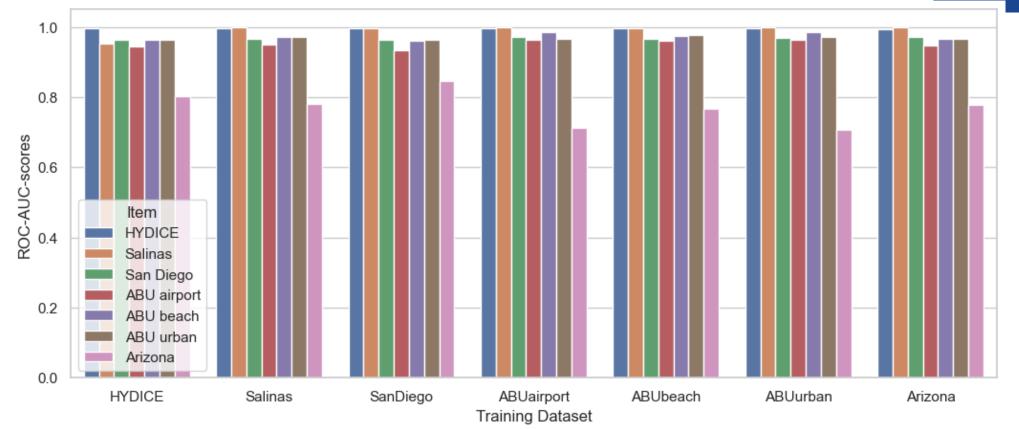
Unsupervised GE-AD

- Investigate all options used in improving supervised GE-AD
- Replacement of Random Forest with unsupervised Mixture Model (GMM) as the meta-model¹



- Evaluation
 - Use only one dataset as training to find base methods

Preliminary Results Evaluate UGE-AD using one-vs-others



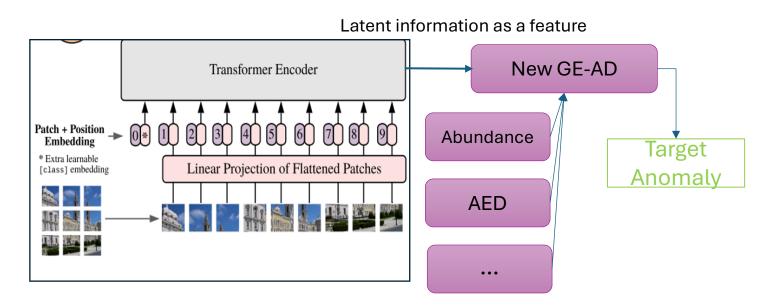
- Average ROC-AUC scores of our UGE-AD over various datasets showing consistent performance against various training datasets.
- The X-axis shows the dataset used in the greedy search to find suitable base methods. The Y-axis shows the testing ROC AUC scores. Except where the dataset names in rows and columns match, those bars show the training score after the greedy search.

Improving Supervised GE-AD

- Spatial and Spectral information from HSI is not visible to GE-AD
- GE-AD can compute different weights based on features from the original data
- Initial investigation: modify GE-AD to give thirty important spectral channels along with four other base methods as input³

Future Plan for Domain Understanding

- Explore options to introduce spectral domain understanding to U-Nets
- Investigate Deep Latent Features from a Vision Transformer (ViT) and Auto-Encoder into a new GE-AD¹ (Greedy Ensemble Anomaly Detector)
- Use **Domain Adaptation** to align **Latent Features** between datasets



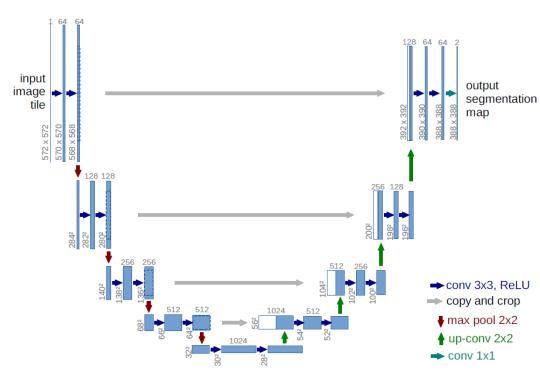
1: **Preprocess hyperspectral images** to improve machine detection accuracy

2: Preprocess digital images to enhance human visibility

3 Detection: **Detect anomalies** in diverse scenarios with higher accuracy to aid humans

#4 Identification: Semantic Segmentation scenes

Background: Semantic Segmentation



- **Definition:** Classifies each pixel in an image to differentiate objects using a deep learning (DL) algorithm
- nnU-Net¹ (no new Unet) introduced an adaptive framework for vanilla U-Net
- TransUNet² replaced the bottleneck layer with ViTs, demonstrating promising results in medical imaging
- HSI-TransUNet³ modified TransUNet with attention module

Preliminary Result: U-Net

- We evaluated the semantic segmentation performance of U-Net and Trans-U-Net
- Weakness: models are trained on RGB dataset and do not understand spectral information
- Dice co-efficient: 0.441 (Trans-U-Net)

RGB visualization

Ground truth

Trans-U-Net Prediction

Proposed Research Plan IV

- Semantic Segmentation scenes with higher accuracy to aid humans
 - Investigate the impact of the U-Net trained on RGB images (Complete)
 - Investigate the impact of modification to U-Net on HS images (Complete)
 - Investigate the impact of transfer learning for small datasets (pending)

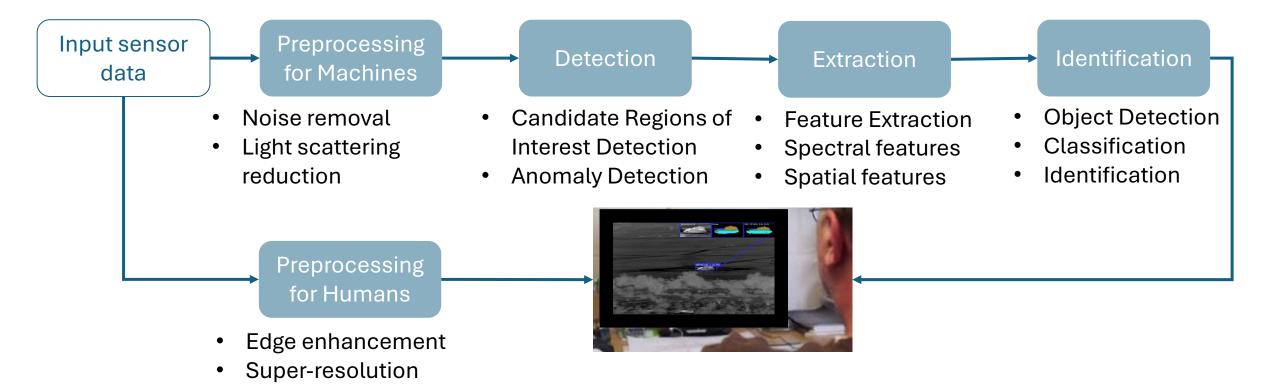
References

- 1. Chang et al. (2002). Anomaly detection and classification for hyperspectral imagery. IEEE transactions on geoscience and remote sensing, 40(6), 1314-1325.
- 2. Li et al. (2019). Hyperspectral anomaly detection with kernel isolation forest. IEEE Transactions on Geoscience and Remote Sensing, 58(1), 319-329.
- 3. Tan et al. (2019). Anomaly detection for hyperspectral imagery based on the regularized subspace method and collaborative representation. Remote sensing, 11(11), 1318.
- 4. Kang et al. (2017). Hyperspectral anomaly detection with attribute and edge-preserving filters. IEEE Transactions on Geoscience and Remote Sensing, 55(10), 5600-5611.
- 5. Yang et al. (2022). Ensemble and random RX with multiple features anomaly detector for hyperspectral image. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
- 6. Lu et al. (2023). Ensemble and random collaborative representation-based anomaly detector for hyperspectral imagery. Signal Processing, 204, 108835.
- 7. Wang et al. (2022). Subfeature ensemble-based hyperspectral anomaly detection algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5943-5952.
- 8. Chang, C. I., & Du, Q. (2004). Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Transactions on geoscience and remote sensing, 42(3), 608-619.
- 9. Winter, M. E. (1999). N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Imaging spectrometry V (Vol. 3753, pp. 266-275). SPIE.
- 10. Keshava et al. (2002). Spectral unmixing. IEEE Signal Processing Magazine, 19(1), 44-57.
- 11. Boardman et al. (1995). Mapping target signatures via partial unmixing of AVIRIS data. In Summaries of the fifth annual JPL airborne earth science workshop. Volume 1: AVIRIS workshop.
- 12. Chang et al. (2006). A fast iterative algorithm for implementation of pixel purity index. IEEE Geoscience and Remote Sensing Letters, 3(1), 63-67.

References cont.

- Su, Hongjun, et al. (2021) "Hyperspectral anomaly detection: A survey." IEEE Geoscience and Remote Sensing Magazine 10.1: 64-90.
- 14. Hossain et al. (2024). Investigation of unsupervised and supervised hyperspectral anomaly detection. In Applications of Machine Learning 2024 (Vol. 13138, pp. 251-261). SPIE.
- 15. Younis et al. (2023). Hyperspectral unmixing-based anomaly detection. Computational Imaging VII. Vol. 12523. SPIE.
- 16. Hossain et al. (2024). Greedy Ensemble Hyperspectral Anomaly Detection. Journal of Imaging 10.6: 131.
- 17. Younis, M. (2023). Investigation of Hyperspectral Data Unmixing and Its Impact on the Task of Anomaly Detection. The University of Memphis.
- 18. Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated algorithm selection: Survey and perspectives. Evolutionary computation, 27(1), 3-45.
- 19. Ma, L., Ma, T., Liu, R., Fan, X., & Luo, Z. (2022). Toward fast, flexible, and robust low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5637-5646).
- 20. Fu, Y., Hong, Y., Chen, L., & You, S. (2022). LE-GAN: Unsupervised low-light image enhancement network using attention module and identity invariant loss. Knowledge-Based Systems, 240, 108010.

Summary: Generic AiTR algorithm system



Final Research Deliverables

- Preprocess digital images to help humans in AiTR
- Preprocess hyperspectral images to improve machine detection accuracy
 - **Detect anomalies** in HS images with higher accuracy
 - Semantic Segment HS images to identify targets
- **Detect anomalies** in diverse scenarios
 - No need for new training
 - Avoid the hassle of going back to square one repeatedly

Significance of the Study

- **Improved Accuracy:** developing new algorithms that can increase the accuracy of target detection methods
- Robustness to Noise and Variability: developing techniques that are robust to noise, atmospheric effects, and variations in lighting conditions
- Adaptability to New Data Sources: developing algorithms to analyze and detect anomalies in diverse data sets effectively

Timeline

Deadline	Work
May 01, 2025 (10 weeks)	Generalized hyperspectral AD
July 15, 2025 (4 weeks)	Investigate HS and digital image processing
August 15, 2025 (4 weeks)	Work on preparing Dissertation
September 18, 2025	Final Dissertation Defense
October 7, 2025	Submit the final copy of the dissertation